added missing chapters

This commit is contained in:
Nareshkumar Rao 2022-01-14 15:48:18 +01:00
parent 991632ca62
commit d1b6612a7e
7 changed files with 56 additions and 20 deletions

View File

@ -0,0 +1 @@
\chapter{State of the Art}

View File

@ -55,8 +55,29 @@ This subsection elaborates the fundamental building blocks of the program that a
\centering
\includegraphics[width=0.8\textwidth]{./design/ProcessOverview}
\caption{Overview of the communication and processing process between the remote controller and the local processor.}
\label{fig:processoverview}
\end{figure}
With the objective of creating a marketable commercial product in mind, the process flow was designed for ease-of-use and ease-of-configuration for the end-user. This is the justification for implementing a remote controller that allows the setup to be remotely configured once installed.
While \autoref{fig:processoverview} gives a brief overview of the inter-relationship of the remote and local sides in the complete process, it is here further elaborated:
\begin{enumerate}
\item \textbf{Transmission of Raw Data:} Upon first startup, the local processing software immediately begins to broadcast the raw sensor data. This data can then be subscribed to by a remote controller.
\item \textbf{Remote Configuration:} Once the remote devices has subscribed to the raw data broadcast, it will be previewed on the FlowRemote GUI interface. See \autoref{fig:flowremote} for an overview of the FlowRemote interface.
\begin{enumerate}
\item \textbf{Image Pre-Processing:} The engineer then pre-processes the image --- rotating, skewing and cropping --- the conveyor belt in the sensor image is vertically aligned and the perspective has been corrected.
\item \textbf{Calibration and Fitting:} Now the engineer may select a single layer or slice of the sensor image which will be used to fit for the conveyor belt curve. The fitting parameters are selected, and the calibration is saved.
\item \textbf{Belt Parameters:} In order to correctly determine the band velocity and volume flow --- see \autoref{sec:dataproc} --- the conveyor belt parameters such as visible length and width need to be provided.
\end{enumerate}
\item \textbf{Transmission of Configuration Parameters:} The parameters that were configured in the previous step are then transmitted back to the local processor, FlowPi, and local processing mode is then engaged.
\item \textbf{Local Processing:} In local processing mode, raw data is no longer transmitted for performance purposes. The sensor data is directly processed on the Raspberry Pi, and the outputs are delivered over Profinet to the Profinet Controller.
\end{enumerate}
\section{Software Architecture}\label{sec:softarch}
\begin{figure}[h]
\centering
@ -108,7 +129,8 @@ The FlowRemote part of the program is designed in order to allow easier configur
As described in \autoref{fig:flowremote}, FlowRemote allows the engineer to remotely preview the raw sensor data, run pre-processing on it, configure the processing parameters and deliver those back to the local processor running on the Raspberry Pi.
\section{Data Processing Details}
\section{Data Processing and Outputs}\label{sec:dataproc}
\section{Housing}
Prototype housing, ideal housing.

View File

@ -0,0 +1 @@
\chapter{Validation}

View File

@ -1,4 +1,4 @@
\chapter*{Acknowledgments}
\chapter{Acknowledgments}
I would like to give special thanks to Prof. Dr.-Ing. Michael Protogerakis for his attentive supervision of my Master Project and this thesis.

View File

@ -5,15 +5,6 @@
\textbf{Abstract}
\end{Huge}
The goal of this thesis is to design and construct a laser resonator for the purposes of Kerr lens mode-locking. The generation of beam focuses near the stability limits that allow for a high variability of the beam width is analysed. Telescopes that allow these limits to be reached are also analysed in the context of a resonator. Different potential resonators are studied, and an optimal design with the targeted properties is selected and assembled. The usage and adjustment of the alignment laser are explained. The individual steps to align the resonator and start it up are also detailed.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Diam phasellus vestibulum lorem sed risus ultricies tristique nulla. Sagittis eu volutpat odio facilisis mauris sit amet massa. Duis ultricies lacus sed turpis tincidunt id aliquet. Diam vulputate ut pharetra sit amet aliquam id. Sapien eget mi proin sed. Amet nisl purus in mollis nunc sed id semper. Sapien et ligula ullamcorper malesuada. Cras tincidunt lobortis feugiat vivamus at. Cras tincidunt lobortis feugiat vivamus at augue eget. Nibh nisl condimentum id venenatis a condimentum. Consequat semper viverra nam libero justo. Turpis egestas pretium aenean pharetra magna ac. Pellentesque massa placerat duis ultricies lacus sed turpis tincidunt id. Nibh ipsum consequat nisl vel pretium lectus quam. Fusce id velit ut tortor pretium viverra suspendisse potenti nullam.
In the experimental part of this thesis, the running laser is studied to check if it has the designed properties. This can be partly already proven by the starting of the laser itself. A measurement of the stability range of the laser is compared to the theoretical model, in order to determine the configuration of the laser in relation to the stability limits. The measurement is enabled by the adjustability of the telescope length while the laser is running. This results in only a weak correlation. However, the stability limit of the resonator lies within the adjustable range of the resonator, allowing potentially for the resonator to be mode-locked.
\vspace*{1cm}
\begin{Huge}
\textbf{Kurzfassung}
\end{Huge}
Das Ziel dieser Arbeit ist es, einen realisierbaren Resonator zum Zweck der Kerr-Linsen-Modenkopplung zu gestalten und aufzubauen. Die Erzeugung von kleinen Fokussen an den Stabilitätsgrenzen, die eine starke Variabilität der Strahlgröße ermöglichen, wird analysiert. Teleskope, welche die Erreichung von diesen Grenzen ermöglichen, werden auch als Teil eines Resonators analysiert. Verschiedene potentielle Resonatoren werden untersucht, und ein optimales Design mit den angestrebten Eigenschaften wird ausgewählt und dementsprechend aufgebaut. Die Benutzung und die Anpassung eines Justierlasers zwecks des Aufbaus des Resonators werden in dieser Arbeit erläutert, sowie die einzelnen Schritte zur Justage und Inbetriebnahme des Lasers.
Im experimentellen Teil der Arbeit wird der laufende Laser untersucht, um zu prüfen ob der Laser die gestalteten Eigenschaften besitzt. Dies wird zum Teil durch das Anspringen des Lasers bewiesen. Eine Messung des Stabilitätsbereichs wird mit dem theoretischen Modell verglichen, um die Konfiguration des Resonators relativ zu den Stabilitätsgrenzen zu bestimmen. Die Messung wird durch die Verstellbarkeit der Teleskoplänge während des laufenden Betriebs ermöglicht. Diese Messung ergibt nur eine schwache Korrelation. Allerdings liegt die Stabilitätsgrenze des Resonators in einem einstellbaren Bereich, was zur Folge hat, dass eine Modenkopplung nicht ausgeschlossen ist.
Mauris augue neque gravida in fermentum et sollicitudin ac orci. Maecenas accumsan lacus vel facilisis volutpat est velit. Nunc sed velit dignissim sodales ut. At erat pellentesque adipiscing commodo elit at imperdiet. Sollicitudin ac orci phasellus egestas tellus. Tellus cras adipiscing enim eu turpis egestas. Pellentesque eu tincidunt tortor aliquam nulla facilisi cras fermentum odio. Vitae purus faucibus ornare suspendisse sed nisi. Viverra adipiscing at in tellus integer feugiat scelerisque varius. Ut etiam sit amet nisl purus in mollis nunc sed. Vitae auctor eu augue ut. Enim nunc faucibus a pellentesque sit amet porttitor. Sit amet consectetur adipiscing elit ut. Egestas quis ipsum suspendisse ultrices gravida. Volutpat blandit aliquam etiam erat velit scelerisque in dictum. Lacus vel facilisis volutpat est velit egestas dui id. Porta nibh venenatis cras sed felis eget velit.

View File

@ -1,12 +1,28 @@
\chapter{Eidesstattliche Erklärung}
\chapter{Declaration of Academic Integrity --- Eidesstattliche Erklärung}
I have written this thesis independently and I have not used any other sources or aids other than the ones stated.
Düsseldorf, February 2022
\vspace{1.5cm}
Nareshkumar Rao
This thesis was supervised by:\\
1. Examiner: Prof. Dr.-Ing M. Protogerakis\\
2. Examiner: Prof. Dr.-Ing R. Beck
\vspace{2em}
\hrule
\vspace{2em}
Diese Arbeit ist von mir selbstständig angefertigt und verfasst worden. Es sind keine anderen als die angegebenen Quellen und Hilfsmittel benutzt worden.
Jülich, Juli 2019
Düsseldorf, Februar 2022
\vspace{1.5cm}
Nareshkumar Rao
Diese Arbeit wurde betreut von:\\
1. Prüfer: Prof. Dr. rer. nat. R. Fleischhaker\\
2. Prüfer: Prof. Dr. rer. nat. Martin Pieper
1. Prüfer: Prof. Dr.-Ing M. Protogerakis\\
2. Prüfer: Prof. Dr.-Ing R. Beck

View File

@ -85,9 +85,10 @@ pdfkeywords={LIDAR, conveyor belt}
\include{./0-Cover/Cover}
%\include{Abstract}
\include{Abstract}
\include{./6-Thanks/Thanks}
%\include{./I-Eides/Eides}
\include{./I-Eides/Eides}
%\include{./II-Abkuerzungen/Abkuerzungen}
\setcounter{secnumdepth}{2}
@ -98,13 +99,17 @@ pdfkeywords={LIDAR, conveyor belt}
\include{./1-Introduction/Introduction}
\include{./2-StateOfTheArt/StateOfTheArt}
\include{./3-Design/Design}
\include{./4-Validation/Validation}
\include{./5-Conclusion/Conclusion}
%\bibliographystyle{plain}
%\bibliography{literatur}
\printbibliography
\include{./6-Thanks/Thanks}
\end{document}